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Introduction 
Crypto enthusiasts live by a motto: “Code is Law”. In other words, code-based systems 
of record are held as superior to legacy financial systems because they are logic based, 
transparent and censorship resistant. This concept, and other memes, have led 
investors to pour multiple trillions into the crypto industry, and into native tokens that 
represent powerful and stable blockchains, like Bitcoin and Ethereum, as well as 
unproven blockchains with sometimes juvenile names, like Polkadot and Magic 
Internet Money.  And while 95%1 of blockchain startups ultimately fail, investors can 
try to predict the winners and losers using publicly available data. Because blockchains 
are built and operated in the public sphere, investors can track who is building and 
maintaining a network, who is using it, and who owns it. Investors often ignore these 
fundamental risk parameters at their peril.  

 
1 Shawgador, Jinia. “Why 95% of Blockchain Startups Fail.” Techopedia.com, 23 Nov. 
2023, www.techopedia.com/why-95-of-blockchain-startups-
fail#:~:text=Even%20with%20a%20high%20failure,1%2C200%20billion%20USD%20
by%202030. 
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This research paper establishes a quantitative framework to test the relationship 
between blockchain network health metrics, otherwise known as blockchain 
fundamentals, and digital asset prices. It follows an earlier research paper, published 
in November 2023, which analyzed trends in blockchain fundamentals across leading 
Layer 1 blockchains. In this study, we analyze the relationship between Ethereum (the 
blockchain) and ETH (the native token) as a case study. With a better understanding of 
the blockchain metrics that impact native token prices, among other factors, investors 
might more appropriately focus their research efforts and generate a differentiated 
investment thesis.  
 
The paper consists of seven sections. 
 
1: Introduction 
2: Summary of Findings 
3: Blockchain Health Metric Descriptions 
4: Correlation and Causation Analysis Methodology 
5: Analytic Observations 
6: Conclusion 
7: Appendix 
 
 

Summary of Findings 
The relationships between blockchain health metrics and token prices are summarized 
in Table 1. Most of the metrics show weak to moderate correlations with digital asset 
prices; however, total value locked is strongly correlated with prices. Two metrics – 
total value locked and code-commits, also show significant causal relationships with 
prices, and warrant further investigation as potential leading indicators of price 
movement. 
 
Table 1. Summary of Correlation and Causality Findings between Ethereum blockchain 
metrics and ETH price 

Category Metric Correlation Causality 

Usage 

Transaction Fees Moderate Insignificant 
Number of Active 

Addresses Weak Insignificant 

Total Value Locked Strong Significant 

Development 

Active Developers Weak Insignificant 
Code-Commits Weak Significant 

Developer 
Experience Weak Insignificant 

https://fcatalyst.com/bin-public/060_www_fidelity_com/external_fcat/documents/Blockchain-Health-Research-Paper-V2-Final.pdf


Category Metric Correlation Causality 

Decentralization 
Validator Count Moderate Insignificant 

Unlocked Supply 
Ratio Market Share Weak Insignificant 

Note:  
1. Granger Causality is to be described in section 4.3. 
2. Statistical significance of Granger Causality does not guarantee strong predictive power. 
3. Results may be influenced by the historical data sampled for the study. This study uses daily volume 

weighted median prices of Ethereum. 

Blockchain Health Metric Descriptions 
1.1 Usage 
Transaction Fees 

Blockchain Transaction Fees are paid to miners or validators for verifying 
transactions. Similar to convenience fees paid to payment processing 
corporations, the fees serve as an incentive for miners or validators to process 
and confirm transactions. Transaction Fees are intended to contribute to the 
security and sustainability of a blockchain. 

 
Number of Active Addresses 

The Number of Active Addresses is defined as the number of unique wallet 
addresses engaging in transactions on a blockchain within the last 24 hours. The 
measure is often used to evaluate adoption and activity levels on a blockchain.  
 

Total Value Locked 
Total Valued Locked refers to the U.S. Dollar value of tokens held in liquidity 
pools, staking mechanisms, or otherwise controlled and custodied by a smart 
contract platform. The value can serve as a gauge of investors’ confidence in a 
blockchain or in the opportunities built within that blockchain’s ecosystem. 

 
Development 
Active Developers 

Active Developers are measured as individual developers who have made code 
commits in the last 30 days to a blockchain’s core repositories. This measure 
reflects activity in the code community, the robustness of the technology, and 
the level of continued innovation and investment in a project. 

 
Code-Commit 

Code-Commits are defined as changes submitted to a project’s GitHub 
repository. Similar to the active developers measure, this metric tracks a 
blockchain’s level of continuous innovation and maintenance. It is important to 



note, some blockchains have intentionally rigid codebases and that will 
suppress this measure relative to that of more open blockchains. 

 
Developer Experience 

Developer Experience is measured by the average number of years that core 
developers have contributed to a project. The measure reflects the degree of 
commitment of existing developers, as well as the addition and subtraction of 
new developers within a blockchain ecosystem. 

 

Decentralization 
Validator Count 

The Validator Count is the number of wallets staking their assets to a blockchain 
and participating in blockchain security. 

  
Unlocked Supply Ratio Market Share 

The Unlocked Supply Ratio Market Share represents the proportion of a specific 
cryptocurrency's unlocked supply ratio relative to the sum of the unlocked 
supply ratios of other major cryptocurrencies in the market. The ratio can be 
used to measure how susceptible a blockchain is to inflation and market 
manipulation. 

 

Correlation and Causation Analysis Methodology 
Momentum 

This research quantifies momentum as the percentage differences between 
current values and trailing averages of a blockchain metric: 

 

𝑀𝑜𝑚𝑒𝑛𝑡𝑢𝑚 =
𝐶𝑢𝑟𝑟𝑒𝑛𝑡	𝑉𝑎𝑙𝑢𝑒 − 𝑇𝑟𝑎𝑖𝑙𝑖𝑛𝑔	𝑁-Day	𝐴𝑣𝑒𝑟𝑎𝑔𝑒

𝑇𝑟𝑎𝑖𝑙𝑖𝑛𝑔	𝑁-Day	𝐴𝑣𝑒𝑟𝑎𝑔𝑒 	. 

 
Comparing a current value to its multi-day historical average is preferred to a 
single-day comparison, because the resulting momentum measure will be more 
robust to outliers and better suited for subsequent correlation and causality 
analyses. In the causality analysis, a 30-day calculation window was chosen to 
balance the tradeoff between ensuring a sufficient sample size and reducing 
noise in the data. 
 

Pearson Correlation Coefficient 
The Pearson Correlation Coefficient is calculated to evaluate the degree to 
which changes in a health metric and changes in price are related. Given a pair 
of variables (X, Y), the Pearson correlation coefficient is calculated as: 



 

𝜌!" =
𝑐𝑜𝑣(𝑋, 𝑌)
𝜎!𝜎"

, 

where 
• 𝑐𝑜𝑣(𝑋, 𝑌) is the covariance (joint variability) between X and Y, 
• 𝜎! is the standard deviation of X, 
• and 𝜎" is the standard deviation of Y. 

 
Pearson Correlation Coefficients range between -1 and +1. A larger absolute 
value of the correlation coefficient indicates a stronger relationship between 
two variables. Table 2 below summarizes a generally accepted guideline for 
interpreting the measure. 

 
            Table 2. Guideline for Interpreting Pearson Correlation Coefficients 

Range Interpretation Illustration 

0 No linear relationship 

 

+1 Perfect positive linear relationship 

 

-1 Perfect negative linear relationship 

 

(0.7, +1) Strong positive linear relationship 

 

(-1, -0.7) Strong negative linear relationship 

 



Range Interpretation Illustration 

(0.3, 0.7] Moderate positive linear relationship 

 

[-0.7, -0.3) Moderate negative linear relationship 

 

(0, 0.3] Weak positive linear relationship 

 

[-0.3, 0) Weak negative linear relationship 

 
  
Granger Causality Test 

While the Pearson correlation analysis is an effective measure of the degree of 
co-movement between two variables, it does not detect if the movement of one 
variable leads to that of the other. The Granger Causality Test is designed to 
determine temporal casual relationships between two stationary time series. 
There is an assumption within this test that if one variable both precedes and 
provides useful information in forecasting another, then there is a causal effect 
between them. In other words, if lagged values of a variable X provide 
information on current  
values of another variable Y, then statisticians describe this effect as “X 
‘Granger-causes’ Y.”  It is worth noting that this is an isolated measure, and the 
observed relationship may be driven by other extraneous factors in the 
environment. 
 
In this study, we investigated the Granger Causality between blockchain metrics 
and Ethereum price momentum. Our initial tests revealed that daily data did not 
exhibit Granger Causality, which could be caused by the noise in daily data. 
Therefore, this study used monthly data to better capture trends and reduce 
noise. 
 



A prerequisite for Granger Causality analysis is stationary data. To achieve this, 
non-stationary blockchain metrics and Ethereum price were transformed by 
applying the aforementioned momentum formula. The resulting momentum 
data was then tested to confirm its stationarity (see Appendix 7.1 for details).  
 
To interpret the output of the Granger Causality Test applied in this research, 
we need to define output measures to be shared. The research objective is to 
show the statistical significance and strength of the links between the health of 
a blockchain and token price changes. 

• The p-value of the Granger Causality Test describes statistical significance. 
If the p-value is lower than 0.05, one can establish statistical significance 
of causality at 95% confidence, the widely applied level of significance in 
statistics. 

• Adjusted 𝑅#  from the research linear regressions indicates the 
explanatory power of blockchain health on token price movements. The 
calculation can range from an unbounded negative value to +1. The 
higher the adjusted 𝑅#, the stronger the explanatory power.  

• The Granger Causality Test contrasts two multivariate regression models 
in producing adjusted 𝑅#.  

o A “restricted” model only used past values of token prices at 
varying lags at a 1-month interval. 

o An “unrestricted” model used past values of token prices in 
conjunction with past values of blockchain health. 

The strength of explanatory power is measured by the lift of the 
unrestricted model’s adjusted 𝑅# over that of the restricted model. 

 
A supplemental measure may need to be used to further validate and explain 
causal relationships. Though the Granger Causality Test is based on multivariate 
regressions that use all the time lags, the research performed a univariate 
regression to further validate the causality of the statistically significant time lag 
to reduce the chance of model overfitting. (See Appendix 7.2 for details of 
recommended maximum lag in the Granger Causality test.) 

Analytic Observations 
Usage 
Transaction Fees 

Transaction Fees exhibit a moderately positive covariation with price 
movements. As the calculation window lengthens, the positive correlation 
between Transaction Fees and price movements remains moderate, as 
illustrated in Figures 1 and 2. 
 



The Granger Causality test, as shown in Table 3, does not indicate a causal 
relationship between Transaction Fees of the Ethereum blockchain and the 
native token (ETH) price (demonstrated by the statistically insignificant p-value). 
Moreover, the adjusted 𝑅# is low, also indicating weak explanatory power of 
Transaction Fees.  
 

   
Figure 1. ETH Transaction Fees and Price 

 

  
Figure 2. Correlation between ETH Transaction Fee and Price Momentums over 

Various Calculation Windows 
 

Table 3. Granger Causality Test Result – Transaction Fees  
1 month lag 1 & 2 month lags 

P-value (Granger Causality Test) 0.0972 0.0641 
Adjusted 𝑹𝟐 (Restricted Model) -0.0195 -0.0254 

Adjusted 𝑹𝟐 (Unrestricted Model) 0.0143 0.0382 
  



Number of Active Addresses 
The covariation between Ethereum’s Number of Active Addresses and ETH 
price is consistently weakly positive.  
 
The p-value of the Granger Causality test is consistently insignificant, and the 
adjusted 𝑅#  is consistently low, indicating no causal effect and limited 
explanatory power. 

 

   
Figure 4. Number of Active Addresses and ETH Price 

 

  
Figure 5. Correlation between Number of Active Address and Price 

Momentums for ETH over Various Calculation Windows 
 

Table 4. Granger Causality Test Result – Number of Active Addresses   
1 month lag 1 & 2 month lags 

P-value (Granger Causality Test) 0.7367 0.6703 
Adjusted 𝑹𝟐 (Restricted Model) -0.0195 -0.0254 

Adjusted 𝑹𝟐 (Unrestricted Model) -0.0397 -0.0563 



  
Total Value Locked 

There exists notable covariation between Total Value Locked and price 
movements over various calculation windows. With a short calculation window, 
the measures are strongly negatively correlated. As the calculation window 
lengthens, the negative correlation becomes more moderate. 
 
 
There exists a mild causal relationship between Total Value Locked and token 
price momentum. The p-value from the Granger Causality test is statistically 
significant. Moreover, when Total Value Locked lagged by 1 month is tested in 
isolation, the p-value is also statistically significant, confirming a causal impact. 
However, with an associated low adjusted 𝑅# this causal relationship should not 
be interpreted as having predicative power. 

 

   
Figure 7. Total Value Locked and ETH Price 

 

 



Figure 8. Correlation between Total Value Locked and Price Momentums for 
ETH over Various Calculation Windows 

 
Table 5. Granger Causality Test Result – Total Value Locked  

1 month lag 1 & 2 month 
lags 

P-value (Granger Causality Test) 0.0202 0.0104 
Adjusted 𝑹𝟐 (Restricted Model) -0.0195 -0.0254 

Adjusted 𝑹𝟐 (Unrestricted Model) 0.0632 0.1005 
 
Development 
Active Developers 

Active Developers and price movements are weakly correlated as can be seen 
in Figures 10 and 11. Note that since Active Developers data exhibits periodicity, 
a 7-day moving average was used to smooth the data. 
 
No causal effect can be observed between Active Developers and token prices. 
The p-value is consistently statistically insignificant, and the adjusted 𝑅# is low. 
 

  
Figure 10. Active Developers and ETH Price 

 



 
Figure 11. Correlation between Active Developers and Price Momentums for 

ETH over Various Calculation Windows 
 

Table 6. Granger Causality Test Result – Active Developers  
1 month lag 

P-value (Granger Causality Test) 0.6044 
Adjusted 𝑹𝟐 (Restricted Model) -0.0302 

Adjusted 𝑹𝟐 (Unrestricted Model) 0.0543 
 
Code-Commits 

Code-Commits are found to have weak correlations with digital asset prices 
measured over different calculation windows, as Figures 13 and 14 illustrate. 
Similar to Active Developers, Code-Commits data also exhibits periodicity. To 
account for this, a 7-day moving average was used to smooth the data. 
 
Although the Pearson Correlation between Code-Commits and price 
momentums is low, the Granger Causality Test indicates a causal effect between 
them. The p-value is statistically significant at a lag of 1 month, both when the 
lagged values of Code-Commits are tested in conjunction and in isolation. 
However, due to the associated low adjusted 𝑅#, this causal relationship should 
not be interpreted as having predicative power.  
 



  
Figure 13. Code-Commits and ETH Price 

 

  
Figure 14. Correlation between Code-Commits and Price Momentums for ETH 

over Various Calculation Windows 
 

Table 7. Granger Causality Test Result – Code-Commits  
1 month lag 

P-value (Granger Causality Test) 0.2166 
Adjusted 𝑹𝟐 (Restricted Model) 0.0268 

Adjusted 𝑹𝟐 (Unrestricted Model) 0.0383 
 
Developer Experience 

Developer Experience exhibits weakly negative correlations with price 
movements, as Figures 16 and 17 illustrate.  
 
The p-value of the Granger Causality test is consistently insignificant, and the 
adjusted 𝑅#  is consistently low, indicating no causal effect and limited 
explanatory power. 



 

  
Figure 16. Developer Experience and ETH Price 

 

  
Figure 17. Correlation between Developer Experience and Price Changes for 

ETH over Various Calculation Windows 
 

Table 8. Granger Causality Test Result – Developer Experience  
1 month lag 

P-value (Granger Causality Test) 0.2166 
Adjusted 𝑹𝟐  (Restricted Model) 0.0268 

Adjusted 𝑹𝟐 (Unrestricted Model) 0.0383 
 
Decentralization 
Validator Count 

Validator Count and price movements are moderately negatively correlated as 
can be seen in Figures 19 and 20.  
 



No causal effect can be confirmed between Validator Count and token prices. 
The p-value is consistently statistically insignificant, and the adjusted 𝑅# is low. 

 

  
Figure 19. Validator Count and ETH Price 

 

  
Figure 20. Correlation between Validator Count and Price Changes for ETH 

over Various Calculation Windows 
 
Table 9. Granger Causality Test Result – Validator Count  

1 month lag 
P-value (Granger Causality Test) 0.0737 
Adjusted 𝑹𝟐 (Restricted Model) -0.0586 

Adjusted 𝑹𝟐 (Unrestricted Model) 0.0599 
 
 
Unlocked Supply Ratio Market Share 

There exists a weakly positive correlation between the Unlocked Supply Ratio 
Market Share and price movements over different calculation windows.  



 
With a statistically insignificant p-value, we conclude that there is no causal 
relationship between Unlocked Supply Ratio Market Share and price changes.  
 

  
Figure 22. Unlocked Supply Ratio Market Share and Price of ETH 

 

  
Figure 23. Correlation between Unlocked Supply Ratio Market Share and Price 

Changes for ETH over Various Calculation Windows 
 
Table 10. Granger Causality Test Result – Unlocked Supply Ratio Market Share  

1 month lag 1 & 2 month lags 
P-value (Granger Causality Test) 0.6197 0.8785 
Adjusted 𝑹𝟐 (Restricted Model) -0.0195 -0.0254 

Adjusted 𝑹𝟐 (Unrestricted Model) -0.0375 -0.0684 
 



Conclusion 
Across all examined metrics, Pearson Correlation analysis yielded moderate 
correlation with Transaction Fees and Validator Count and strong correlation with Total 
Value Locked. Perhaps unsurprisingly, there is a relationship between token price and 
Transaction Fees, the number of validators getting paid to secure the network 
(Validator Count), and dollars currently invested in decentralized applications (dApps). 
To interpret these relationships and determine which value is leading versus following, 
this paper performed causality analysis. By leveraging the Granger Causality test and 
additional univariate regression, this study found mostly insignificant causal 
relationships between blockchain metrics and Ethereum price. However, Total Value 
Locked and Code-Commits were found to have statistically significant causal 
relationships. 
 
While this study uncovered statistically causal relationships in isolation, there are 
multiple factors not considered in the analysis. The price of any digital asset is 
influenced by a complex web of market forces and investor sentiment, among other 
factors.  Are investments in dApps built on top of a blockchain, or spikes in open-
source developer activity, leading indicators of price appreciation? Are declines in 
dApp usage and developer activity signals that a blockchain is failing? We are 
investigating these questions and more at SherlockAnalytics. Please reach out to 
contactsherlock@fmr.com for more information. 

 

Appendix 
Monthly Momentum Data Stationary Test 

Stationarity is a crucial property of time series data, where the statistical 
characteristics remain constant over time. In the context of Granger Causality 
analysis, ensuring the stationarity of the data is essential to avoid spurious 
relationships and misleading results. The Augmented Dickey-Fuller (ADF) test is 
a widely used statistical method to determine whether a time series is stationary 
or contains a unit root. The ADF test assesses the null hypothesis that a unit root 
is present in the data, and rejecting this hypothesis indicates that the series is 
stationary. 
 
Table 11. ADF Stationary test result 

Metric Monthly Data Size P-value 

Price 49 4.115e-10 
Transaction Fees 49 0.009136 

Number of Active Addresses 49 0.0002643 
Total Value Locked 49 0.001238 
Active Developers 36 5.6569e-12 



Metric Monthly Data Size P-value 

Code-Commits 36 0.0009748 
Developer Experience 36 0.03009 

Validator Count 15 0.01707 
Unlocked Supply Ratio 49 0.0006453 

 
Recommended Maximum Lag in the Granger Causality Test 

Excessively long lags can lead to model overfitting. To mitigate this issue, we 
determined maximum time lags based on the rule of thumb that at least 10 
observations are required for each independent variable in regression analysis 
(Harrell, 2001). In the context of Granger Causality testing, each additional lag 
introduces two variables to an unrestricted model. Consequently, 20 
observations were necessary for each lag included in the analysis.  

 
Table 12. Recommended Maximum Lag in the Granger Causality Test  

Category Metric 
Start 
Date 

End 
Date 

Data 
Size 

Monthly 
Data Size 

Max 
Lag 

Usage 

Transaction Fees 2020-
01-01 

2024-
02-20 1474 49 2 

Number of Active 
Addresses 

2020-
01-01 

2024-
02-20 1474 49 2 

Total Value 
Locked 

2020-
01-01 

2024-
02-20 1474 49 2 

Development 

Active 
Developers 

2021-
01-01 

2024-
02-20 1108 36 1 

Code-Commits 2021-
01-01 

2024-
02-20 1108 36 1 

Developer 
Experience 

2021-
01-01 

2024-
02-20 1108 36 1 

Decentralization 
Validator Count 2022-

01-01 
2024-
02-20 456 15 1 

Unlocked Supply 
Ratio 

2020-
01-01 

2024-
02-20 1474 49 2 
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